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We give the results of a theoretical and experimental investigation of the kinetics 
of the dissolution of boron--salt ores of the Inder deposit in a boiling layer. 

Boron-producing plants are beginning nowadays to use raw materials with a low concen- 
tration of boron oxide- for example, ores from Kazakhstan deposits, which are characterized 
by a complex mineralogical composition and polydispersity. The enrichment of such ores may 
be carried out by washing away with water the readily soluble salts, mainly NaCI (over 50%) 
and KCI (over 30%). If a substantial intensification of the process is desired, it is ad- 
visable to use a boiling layer [i, 2]. 

The theory of dissolution of multicomponent mixtures, as pointed out by the authors of 
[3], has not been sufficiently developed at the present time. In particular, there are no 
reliable theoretical methods for determining the mass-exchange coefficients, and little study 
has been done on the kinetics of dissolution in a fluidized bed. The principal reason for 
this is that in the general case the rates of dissolution of the individual components are 
interrelated. If the mass-exchange coefficients for the dissolution of the individual com- 
ponents are known~ then the mathematical model for the process can be constructed on the 
basis of a system of kinetic equations of component-by-component dissolution, taking account 
of the contribution made to the moving force of the process by all the concentrations that 
affect it [3]. 

In the light of the complexity of the process of enrichment of boron--salt ores and the 
difficulty of experimentally investigating the component-by-component dissolution of a poly- 
disperse material in a boiling layer, we shall confine ourselves in the present study to 
considering the effective kinetics. We write the linear phenomenological law for the rate 
of change of the radius of a particle 

d__f__r = _ L [C~ --C (t)] (i) 
dt 

and the material balance equation (per unit volume of the solution), disregarding in the 
first approximation the variation in the volume of the liquid phase: 

I~ ( l  - -  y) = c (t) - -  c,,. ( 2 )  

To close the system of equations (I), (2), we must have an additional relation which 
will enable us to establish the connection between y and r. We use as such a relation the 
kinetic equation for the distribution function of the particles in the phase space of their 
dimensions [4 ] 

af + ~ = o. ( 3 )  
at Or 

The distribution function f(r, t) satisfies the conditions 

dN(r)  = N O f ( r ,  t) dr, f (r, O) = fo (r), i fo (r) dr = 1. (4 )  
o 

It should be noted that the kinetic equation (3) has been used repeatedly in the mathe- 
matical modeling of mass-exchange processes in various polydisperse systems [5, 6]. 

The material-balance equation, taking account of (4), is the follow~ng: 

c ( t ) - -  co = I - -  - -  f (r ,  t) a~r. 
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Fig. i. Kinetics of dissolution in a boiling layer 
(/t-, c~/2): i) function ~ = ~(IT), the dots represent our 
own experiment, and the curves represent calculation ac- 
cording to (15); 2) ~ = ~ (%O , the curve represents cal- 
culation according to (15), the points according to the 
data of [3, p. 86, Fig. 11.31]; 3) invariant function, the 
curves represent calculation according to (18), and the 
dots represent our own experiment; 4) K c = 0.16c , v s = 
0.7 m/sec; 5) 0.15 and 0.9; 6) 0.13 and 1.0; 7) 0.14 and 
1.3; 8) 0.18 and 1.73; 9) 0.ii. 

Thus, the connection between y and r is defined by the integral 

; rS t) dr, (5) y = 

- - 3  
ro denotes averaging over the initial distribution fo (r). 

The function y(t) at the beginning and the end of the dissolution process takes on the 
values 

y ( O ) = l ;  Yend= l - - b ;  b =  Cs- -Co p (6) 

A number of authors, on the basis of an analysis of experimental data~ have established 
the self-similarity of the process of dissolution in a boiling layer with respect to the 
characteristic dimension of the particles [3]. This means that the phase velocity W in Eq. 
(3) depends only on time and is independent of r, the radius of the particles. Using this 
fact and the equations of motion (i) and balance (2), taking account of (6), we can repre- 
sent (3) in the form 

df _ of + of = a___L + pL (1 - b - -  y) ,Of_ = O. (7 )  
dt Ot Or Ot Or 

From t h i s  r e l a t i o n  i t  f o l l o w s  t h a t  t he  d i s t r i b u t i o n  f u n c t i o n  f ( r ,  t )  i s  t he  i n t e g r a l  o f  t he  
motion. Since the latter is multiplicative, it is convenient to pass to the function in 
f(r, t), which also satisfies (7). Using the method of characteristics [7], we write the 
solution of Eq. (7): 

t 

In f (r, t) = a~ S i [Y-- (1 - -  b)] d t - -  ~ (at) + In A, (8) 
0 

where in A-- ~(ar) = In fo(r). 

The constants of integration a and in A are found from the normalization condition (4~. 
By directly substituting (8) into (7), we can verify that In f exactly satisfies (7), where 
the initial distribution fo(r) of the particles according to dimensions is approximated by 
the function 

fo (r)= l--L_ exp (--  r/r--o). 
ro 

(9) 
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If fo (r) has a more complicated structure, then we can use the methods worked out in 
[5] in constructing the solution of the kinetic equation (7). Analysis on the basis of 
these methods shows that starting from some instant of time, the distribution of particles 
according to dimensions can be represented with sufficient accuracy in the form (9), which 
means that we can re~ard (8) as an approximate solution of the problem with arbitrary fo(r). 

Substituting f(r, t) from (8) into (5) and noting that 

fo (r) dr  ~- 1, 
/ ' 0  

0 

we obtain an integral equation for determining y(t): 

y (t)=exp{--a[~ f L  [ g -  (1 -- b)] dr}. (10) 
0 

The linearized equation (i0) in a quasistationary regime of dissolution, when the kinetic 
coefficient L is independent of t [3, 8], yields an exponential variation for the concentra- 
tion as a function of time. 

The analysis of the experimental kinetics of the enrichment process in a boiling layer, 
represented in Fig. i, indicates that the kinetic curves are satisfactorily approximated by 
representing the concentrations as exponential functions not of t but of ~. 

Such a kinetic law of dissolution is the solution of Eq. (I0) if we assume that L is a 
function of I/]f{( This nonstationarity may be caused by the high intensity of the mass-ex- 
change process during dissolution in a boiling layer. 

In actuality, the data shown in Fig. 1 indicate that during 0.i of the total dissolution 
time there is an increase in the concentration of the solution to 0.9 of its maximum value. 
As the density increases further, we observe a deviation from the law inc ~ ]~; this is ob- 
viously due to the establishment of a quasistationary regime. However, these deviations do 
not exceed 10%9 which is entirely acceptable for an engineering calculation method. 

Physically, the nonstationarity of the effective kinetics of the mass exchange may be 
related to the properties of the behavior of the diffusion boundary layer. Because the dis- 
solution rates are different, initially the solution of readily soluble components shields 
the particles, but in turbulent flow the boundary layer is cyclically disrupted and renewed 
[9]. As a result, it becomes gradually saturated with slow-dissolving substances. Thus, 
the effective diffusion resistance changes with the passage of time. This happens because 
of the changes in the chemical composition of the solution and in the average diameter of 
the total number of particles. 

The kinetic coefficient can be expressed in terms of the mass-exchange coefficient in 
the usual manner [3, 5, 8]: 

• D 
L(t)-- -- K(t), KN-- (ii) 

Psolid d 
- - - - 1  

Tak ing  i n t o  a c c o u n t  t h e  f u n c t i o n  L ( t )  p r o p o s e d  a b o v e ,  ( 1 1 ) ,  and t h e  r e l a t i o n  a = ro = 2 d - * ,  
we r e p r e s e n t  a S L ( t )  i n  (10) i n  t h e  fo rm 

a~L (t) = Ke ,.~ ~• . (12) 

2 ~r~- p soliddV ~ 

L i n e a r i z i n g  (10) and t a k i n g  a c c o u n t  o f  ( 1 2 ) ,  we o b t a i n  a d i f f e r e n t i a l  e q u a t i o n  f o r  d e t e r m i n -  
i n g  t h e  f u n c t i o n  y ( t ) :  

dg _ K~ [g_(l_b)] (13) 
dt 2 1/7 - 

The s o l u t i o n  o f  t h i s  e q u a t i o n ,  t a k i n g  a c c o u n t  o f  ( 6 ) ,  i s  t h e  f o l l o w i n g :  

g = 1 - -  b [1 - - e x p  (-- KoF~)I (14) 

or, using (2) to pass to concentrations, we find 

~=  C~--C(O 
C~ - -  C0 -- exp ( - - -KcVf) .  (15) 
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Fig. 2. Effect of boiling-layer hydrodynamics 
on the dissolution kinetics (the notation for 
the points is the same as in Fig. i; Kc, 
secl]a; Vs, m/sec); a) i: K c as a function of 
the superficial velocity (experiment); 2: 
percentage of enriched substance in the final 
product as a function of the superficial vel- 
ocity (experiment); 3: invariant function 
y = y(x), our own experiment; 4: invariant 
function y = y(x) according to the data of 
[3]; b) the curve shows calculations accord- 
ing to the formula of [ii]; c) scheme of cir- 
culation of the material at minimal mass-ex- 
change intensity. B=03, % 

In treating experimental data on the kinetics of dissolution, it is very convenient to 
use invariant functions [3, 8, i0]. In the present case a function invariant with respect 
to the hydrodynamic regime can be found theoretically; this is usually a fairly complicated 
matter. We introduce a new variable by using the relation [3, I0] 

t 

I t .  - -  C (t)l dt 

x ( t )  = o (16) 

j'. [c ,  - c (t)] dt 
o 

Using (15) and (16), after integrating, we obtain 

x( t )  = 1 - -  e -Kc VF(Ke V F  + 1). ( 1 7 )  

Eliminating t from (14) and (17), we finally find 

x----i g--(l--b) [l--ln g--(l--b) ]. (18) 
b b 

The experimental investigation of the kinetics of enrichment of boron-salt ores was 
carried out in a conical apparatus with periodic action [i]. The choice of the shape of the 
apparatus enabled us to ensure practically ideal mixing conditions. The brine was circulated 
by means of a pump through an overflow tank. The dissolution was carried out at room tem- 
perature at superficial velocities of v s = 0.70, 0.90, 1.0, 1.30, and 1.73 m/sec (according 
to the inlet cross section of the apparatus). In the experiments we determined the instan- 
taneous density (concentration) of the brine, its chemical composition, and theyield of the 

desired product (the Ba03 content in the undissolved residue). The data obtained in the ex- 
periments are shown in Figs. 1 and 2. 

The variation of the concentration of the dissolved substance as a function of time was 
approximated by Eq. (15), curve 1 in Fi~. i. The coefficients K c were determined by the 
method of least squares. Figure 2 shows K c as a function of the superficial velocity. It 
has a minimum at vf = 1 m/sec. The existence of this minimum can be explained by the scheme 
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of circulation of the material (Fig. 2c), observed visually (the walls of the apparatus were 
made of transparent plastic). In this regime a minimal amount of B=Os is washed out from 
the solid residue (curve 2 in Fig. 2a). All the fluidization regimes are described by the 
invariant function (18) (curves 3 in Figs. 1 and 2). From the values found for the coef- 
ficients K c for the ascending branch of curve 1 in Fig. 2a, we calculated the dimensionless 
mass-exchange coefficients Nu as functions of the Reynolds numbers, Re = vsd/~ (Fig. 2b). 
As the determining parameters we used the superficial velocity v s and the average particle 
diameter d calculated from the initial distribution (according to sieve-analysis data). The 
average mass-exchange coefficients K were found by means of the empirical formula obtained 
by taking account of (12): 

N u - -  Kd : 0.07 Ko~so1~d . 

The s o l i d  c u r v e  i n  F i g .  2b was c a l c u l a t e d  f rom t h e  e q u a t i o n  

Nu ~ ll.14.10-SRe~176 ~ 

o b t a i n e d  by Bogomolov [11]  i n  h i s  i n v e s t i g a t i o n  o f  t h e  d i s s o l u t i o n  o f  s y l v i n i t e  i n  a f l u i d -  
i z e d  b e d .  We g i v e  b e l o w  t h e  n u m e r i c a l  d a t a  o b t a i n e d  f o r  t h e  p a r a m e t e r s  o f  t h e  p r o c e s s  o f  
e n r i c h m e n t  o f  b o r o n - s a l t  o r e s  and  u s e d  i n  t h e  e x p e r i m e n t s  we h a v e  d e s c r i b e d :  C s = 220 kg /mS;  
P s o l i d  = 2700 kg /mS;  b = 0 . 8 8 ;  V ~ = 100 l i t e r s ;  Mo = 25 i~ 2 .solid kg; B = 250 kg/mS; d = 4 mm; 

= 2; D = 1.69"10 -9 m2/sec; v = 1.78"10 -6 m /sec (D and ~ were calculated by Bogomolov's 
method). In addition to the results of our own experiments, we also processed by the method 
given in this study the experimental data on the dissolution of the binary mixture NaCI--KCI 
which are given in [3, pp. 82 and 87]. The results of the calculations are shown in the 
straight line 2 of Fig. 1 and curve 4 of Fig. 2a. The kinetic curves ~(t) are ~atisfactorily 
approximated by Eq. (15). 

Thus, the theoretical model is in satisfactory agreement with the experimental data on 
the kinetics of the dissolution of multicomponent mixtures. 

NOTATION 

L, kinetic coefficient; C(t), Co, Cs, instantaneous, initial and saturation concentrations 
of the dissolved substance; Msolid(t) , Mo.solid, instantaneous and initial mass of the solid 
substance; y(t) = Msolid(t)/Mo.solid; B = Mo.solld-/Vllq-; Vllq., volume. .~ the liquid phase; 
r, particle radius; t, time; W = dr/dt, velocity of displacement o! the image point in the 
phase space; No, initial number of solid particles in the system; ro = i/a, average initial 
particle radius; a, A, constants of integration in (8); • particle-shape coefficient; Psolid~ 
density of the solid material; D, diffusion coefficient; K, mass-exchange coefficient; Kc, 
coefficient in (12); Ar, Archimedes number; Pr, Prandtl number. 
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NUMERICAL SOLUTION OF A NONSTEADY EXTRACTION PROBLEM IN THE CASE 

OF NONLINEARITY OF THE MASS-TRANSFER-COEFFICIENT RELATION 

A. Minchev, Iv. Penchev, 
and I. Kh. Tsibranska 

UDC 621.039.327 

A numerical solution is presented to an extraction problem with a variable mass- 
transfer coefficient and variable concentration of the external medium and a non- 
linear condition of equilibrium on the surface of the body. 

Well-known analytical solutions [I, 2] to the problem of nonsteady mass transfer during 
extraction were obtained for relatively simple cases, when the mass-transfer coefficient was 
assumed constant over the duration of the process. These solutions often differ significantly 
from the empirical data. In these cases, there is no regular regime [3], which can be at- 
tributed to several factors. Among these factors are avariable mass-transfer coefficient, 
polydispersity [4], the simultaneous extraction of several substances, and kinetic nonequiv- 
alence of the pores [5]. 

The study [2] examined special cases of mass transfer. The study [i] found the region 
of a regular regime with B = 0. The report [6] approximately solved the problem with allow- 
ance for the linear dependence of the mass transfer coefficient on concentration. The in- 
vestigation [7, 8] obtained a solution in the case of a mass-transfer coefficient dependent 
on concentration without approximations limiting the form of the function but with Bi = ~. 
These studies investigated exponential and rational dependences of the mass-transfer coef- 
ficient on concentration. Other particular solutions were obtained for a constant mass 
transfer coefficient and B # 0 [9-14]. 

This article presents a numerical solution of the above problem for three classic forms 
(plate, T = O; cylinder, T = i; sphere, T = 2) with a variable mass-transfer coefficient, 
variable concentration of the external medium, and nonlinear condition of equilibrium on the 
surface of the body. 

Formulated in this way, the problem is described by the equation 

6C~laz x r axarxrDe(C~)~]" (1) 

Equation (1) is  supplemented by the following boundary and i n i t i a l  condi t ions :  

W (~C1 

ac2 - 0 ;  x--:o; ~>0, (2) 
ax 

ac~ (3) 
- -  - W ~ V o ( C ~ )  S--~-~-Tx~; x = R ,  

C 1 .= ~ (C~); x -~ R,  ( 4 )  

C2 : C2o; C I = Clo; T : O. ( 5 )  
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